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A new stable numerical method is described for solving the Navier-Stokes equations 
for the steady motion of an incompressible fluid in three dimensions. The basic governing 
equations are expressed in terms of three equations for the velocity components together 
with three equations for the vorticity components. This gives six simultaneous coupled 
second-order partial differential equations to be solved. A finite-difference scheme with 
second-order accuracy is described in which the associated matrices are diagonally dominant. 
Numerical results are presented for the flow inside a cubical box due to the motion of one 
of its sides moving parallel to itself for Reynolds numbers up to 100. Several methods of 
approximation are considered and the effect of different discretizations of the boundary 
conditions is also investigated. The main method employed is stable for Reynolds numbers 
greater than 100 but a finer grid size would be required in order to obtain accurate results. 

1. INTK~DuCTI~N 

There has been much interest in recent times in new finite-difference schemes for 
approximating partial differential equations which arise in the numerical solution of 
the Navier-Stokes equations governing the motion of a viscous fluid. A typical case 
arises in the approximation of the vorticity transport equation for the steady two- 
dimensional flow of an incompressible fluid. It is possible by the use of specialized 
techniques to obtain an approximating set of finite-difference equations which have 
coefficients involving exponentials. These equations have properties which suggest 
that they may be sometimes superior to the more standard methods of approximation 
in the associated computational procedures. The properties are similar to those of 
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the upwind and downwind types of differencing schemes but the equations can be 
shown to approximate more accurately to the basic differential equation than these 
schemes. 

The basis of the exponential type of approximation goes back to a paper by Allen 
and Southwell [I] which studied the steady two-dimensional flow past a circular 
cylinder. The method was examined in detail in a subsequent paper by Dennis [2] who 
also proposed an alternative method in this two-dimensional case. Later investigations 
of a similar nature have been given by Spalding [3], Dennis [4], and Roscoe [5]. An 
extension to three-dimensional flows has been made by Roscoe [6]. In the present 
paper the extension of the alternative method to Allen and Southwell’s method of 
approximation given by Dennis [2] and Dennis and Hudson [7] is made to problems 
in three dimensions governed by the Navier-Stokes equations for the steady flow of 
incompressible fluids 

Several different finite-difference formulations of the steady-state three-dimensional 
Navier-Stokes equations have previously been investigated but usually they reduce 
to one of two approaches. The set of partial differential equations can be solved in 
what are called the primitive variables, i.e., velocity components and pressure, and 
Chorin [8] and Williams [9] have investigated this approach. Difficulties arise with 
the pressure boundary conditions and also difficulty in satisfying continuity leads to 
instabilities. Aziz and Hellums [IO] have formulated the Navier-Stokes equations in 
terms of the components of the vorticity and a vector potential. In either of these two 
approaches the steady-state equations are coupled and elliptic and must be solved 
iteratively. Mallinson and De Vahl Davis [I l] developed a method of finding the 
steady-state solution by solving the unsteady equations using the method of false 
transients. An evaluation of upwind and central-difference approximations by means 
of a study of recirculating flows in two and three dimensions was given by De Vahl 
Davis and Mallinson [12]. Richardson and Cornish [13] have presented a method for 
solving three-dimensional incompressible flow problems including those governed 
by the Navier-Stokes equations. Finally, the most recent work on three-dimensional 
problems appears to be the study by Mallinson and De Vahl Davis [14] of natural 
convection in a rectangular cavity as a result of differential heating of the sides. 

In the present paper a formulation of the three-dimensional Navier-Stokes equa- 
tions for steady flow which bears some similarity to that of Aziz and Hellums [lo] is 
used. The main difference is that three equations connecting the velocity and vorticity 
components are employed instead of a vector potential. These three equations 
together with the three expressing the transport of vorticity give six simultaneous 
second-order partial differential equations to be solved. This formulation was used 
by Cook [ 151 who employed central differences to approximate all partial derivatives. 
The present investigation uses the specialized finite-difference treatment described 
by Dennis [2], which is applied to the equations governing the transport of vorticity 
by a direct extension of the two-dimensional method. Unfortunately these finite- 
difference equations involve exponential functions and the associated matrices are 
not necessarily diagonally dominant (Varga [16]). Dennis and Hudson [7] showed 
how these two difficulties could be avoided and still maintain second-order accuracy. 
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This formulation is extended into three dimensions and used in the present paper. 
The three equations of Poisson type governing the velocity components are approxi- 

mated by standard finite-difference methods. The usual no-slip boundary conditions 
for the velocity components are assumed on solid boundaries. Values of the vorticity 
components on solid boundaries are calculated, where necessary, by means of the 
equations which express these components in terms of derivatives of the velocity 
components. Two alternative approximations to these derivatives are investigated 
from the point of view of accuracy. Standard iterative procedures are used for solving 
the resulting finite-difference equations. A numerical example is considered in which 
the flow inside a cubical box due to the motion of one of its sides parallel to itself is 
computed. The results are compared with the results of the calculations of De Vahl 
Davis and Mallinson [12] and Cook [ 151 and the experimental results of Pan and 
Acrivos [ 171. 

2. BASIC EQUATIONS 

The following formulation can be developed from the vector potential method of 
Aziz and Hellums [lo] but will be given directly instead. The steady-state Navier- 
Stokes equations in three dimensions in the absence of any external forces may be 
written in the form 

Wq2) - q x (V x q) = - f vp + v vq, 

where q is the velocity vector, p the density, p the pressure, and v the kinematic 
viscosity. The continuity equation is given by 

v*q =o. (2) 

If we take the curl of Eq. (1) to eliminate the pressure we obtain, in nondimensional 
component form, 

where (x, y, z) are the Cartesian coordinates, (u, u, w) the corresponding 
components, and ([, r], 5) the vorticity components which are given by 

Pa) 

(W 

(3c) 

velocity 

(4) 
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FIG. 1. The geometry. 

All quantities are assumed nondimensional and R = Udlv is the Reynolds number 
based on a representative velocity U and length d. By use of the continuity equation 
(2), Eqs. (4) can be written 

vzu = arl - 3. 
az ay 9 

v2v = ag - ag 
ax az 3 

vzw = 3 - 2% 
ay ax * (5) 

It can be shown that satisfying Eqs. (3) and (5) implies that the equation of continuity 
(2) is automatically satisfied. 

The three-dimensional square cavity DEFGHIJK of edge length d in which the 
solutions are to be obtained is shown in Fig. 1. The motion in the cavity is driven by 
the surface GFJK sliding with speed U in the positive x direction and all other surfaces 
of the cube are held at rest. The plane OABC (z = 0) is half way between the planes 
DEFG and HIJK and the flow is symmetrical about this plane. Thus the Navier- 
Stokes equations have to be solved only in the upper half of the box z > 0 and the 
boundary conditions are 

Onx=Oandx=l:u=v=w=O;[=O,y=-aw/ax,(=av/ax. 
On y = 0: u = u = w = 0; f = awlay, 17 = 0, 5 = -a24/ay. 

Ony=l:u=l,v=w=o;f=aw/ay,7)=0,[=-au/ay. (6) 
On z = 0: aujaz = av/az = w = 0; f = 0, rl = 0, at/a2 = 0. 

On z = $1 u = v = w = 0; 5 = -&I/~z, v = aula.2, 5 = 0. 

3. FINITE-DIFFERENCE EQUATIONS 

The region of integration is covered by a cubical grid with elements whose sides are 
of length h and which are parallel to the x, y, and z directions. The present work is 
confined to taking equal grid sizes in all three directions, although this is obviously 
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capable of generalization to unequal grid sizes in the three directions. In order to 
simplify the notation for subscripts, the scheme indicated in Fig. 2 is employed. In 
this a quantity at a typical point (x0 , y0 , z 0 ) is denoted by means of a subscript 0 and 
the subscripts 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 denote quantities at the points 
(x0 + A, Yo , zo), (x0, Yo + h, zo), (x0 - k Yo 9 zo), (x0 2 Yo - h, zo), (x0 ? Yo , zo + 4, 
(x0 , yo , zo - h), (x0 + 2h, yo , zo), (x0 , yo + 2h, zo), (&I - 24 Y, , zo), (x0 , yo - 24 zo), 
(x0 , y. , z. + 2h), and (x0 , y. , z, - 2h), respectively. 

FIG. 2. Notation for the grid points. 

Equations (5) and (3) can be written, using central-difference formulations to an 
accuracy which is of order h2, in the forms 

uo = i[Ul + u2 + u3 + 4 + u5 + % + g2 - 54 - r/5 + 76)], 

uo = $1 + u2-t 03 + u4 + u5 + 06 + ;cc - (6 - 51 + L)], (7) 

wo = &1+ w2 + w3 + w4 + w5 + W6 + gh- 7?3 - 52 + w], 

@b) 
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Equations (7) determine U, u, and w and Eqs. (8) determine [, 7, and 5. 
Although the matrices associated with Eqs. (7) are diagonally dominant those 

associated with the Eqs. (8) may not be and the solution of Eqs. (8) can only be 
expected to be obtained, at large values of the Reynolds number, if these equations are 
solved using an underrelaxation parameter, CY say. Equations (7) are diagonally 
dominant and therefore can be solved using an overrelaxation parameter, j3 say. In 
order to overcome these difficulties Eq. (3) can be written using upwind and downwind 
differencing as described by Greenspan [ 18 ] and Gosman et al. [19] but with the result 
that the accuracy is reduced to order h. Alternatively, an extension of the method 
derived by Dennis [2] may be used, which will only be summarized briefly. Equation 
(3a) is written in the form of three equations 

aZS-&.LQ-A-B 
3x2 ax , 

where Q = -R([ au/ax + ~7 &lay + 5 au/az) and A and B are unknown functions 
of x, y, and z. Equation (9a) is solved along the grid segment (x,, - h, y,, , z,,) to 
(x0 + h, y,, , zO) by first applying a transformation which removes the first-derivative 
term from the left side and then approximating the equation which results from this 
transformation by central differences at the point (x0 , yO , z,,). After this approxima- 
tion has been made, the new dependent variable of the transformation is replaced by 
the variable 5. A similar procedure is applied to (9b) along the grid segment 
(x0 2 Yo - h, zo) to (x0 , y, + h, zO) and likewise to Eq. (9c) along the grid segment 
(x0 > Yo 3 zo - h) to (x0 , y. , z, + h). All three of the approximating equations involve 
the unknown quantities A, and B, , the local values of A and B at (x0 , y. , zo). 
Elimination of A, and B, gives the finite-difference equation 
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where 

4~ yo 3 zo> = -4R j-’ u(e, xo , yo) de, 
% 

s(xo , y, zo) = --SR j-*1 4x, , 0, zo) de, 

00 , yo > 4 = -iW j-1 4x0 , ~0 9 0) de. 

Equations (3b) and (3~) can be put in finite-difference form in a similar way and the 
approximations which result are 

rllerl + q2ese + q3era + q4es4 + q6eta + r16eta - [6 + iR2h2(uo2 + uo2 + wo2)l q. 
= --BRh[Jo(~, - 4 + rlo(~2 - 4 + 50(% - dl, (10’3 

tleT1 + 12ese + 13eTa + C4es4 + &et6 + Let6 - [6 + iR2h2(u,2 + 2): + wt>l Co 

= --Bwto(w - w*) + rlo(w2 - WJ + t-0(% - %N* uw 
The equations of type (10) are solved by iterative procedures for the three functions 

5, 7, and 5. During the course of the solution procedure the contributions to these 
equations from U, o, and w are temporarily held tied at their current values. Also, in 
solving a given equation of type (10) it is assumed, for the purpose of the following 
discussion, that the right side is also held fixed at its current value. The associated 
matrix of a given equation is then considered to be that associated with the left side. 
This associated matrix is not necessarily diagonally dominant. Although the six 
exponential coefficients must necessarily be positive it cannot be shown that their 
sum will not exceed the magnitude of the coefficient with subscript zero, which is the 
required condition. In fact, for high Reynolds numbers some of the exponential 
coefficients may become large and the condition for diagonal dominance must almost 
certainly be violated. However, following Dennis and Hudson [7], by expanding 
the exponentials and retaining terms of order h2 Eqs. (10) can be approximated by 

(1 - Wuo + g-R2h2u02) 51 + (1 - WV,, + BR2h2v,2) f2 

+ (1 + Wuo + 4R2h2u02) 5s + (1 + !&uo + 4R2h2u02) 5, 

+ (1 - $Rhw, + jR2h2w02) 56 + (1 + WJW, + iR2h2w,8) Es 
- [6 + tR2h2(uo2 + ~0’ + wo”>l to 

= - BWSo(u, - us) + rlo(u2 - %I + 50(% - %)I, UW 

(1 - 3Rhuo + QR2h2u02) 71 + (1 - WV, + +R2h2u02) 72 

+ (1 + Wuo + QR2h2U02) 73 + (1 + @ho, + +R2h2~02) 74 

+ (1 - Ww, + BR2h2w02) qs + (1 + Wwo + M2h2w02) r], 

- t6 + iR2h2(uo2 + vo2 + wo2N r)o 

= - !zRhtso(~l - v3) + 7?0@2 - Qil + bob - a, (lib) 

5w33/3-3 
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(1 - &Rhu, + &R2h2uoZ) [, + (1 - #hv, + $R2h2v02) c2 

+ (1 + +Rhu, + +R2h2u,,2) C3 + (1 + #hv, + &R2h2v,2) Cc, 

+ (1 - @hw, + +R2h2w,,2) & + (1 + +Rhw,, + +R2h2w,,2) 5, 

- [6 + $R2h2(uo2 + vo2 + wo2>1 5, 
zz2 - hWoo(wl - 4 + 770@2 - wJ + Co(ws - ~4. (114 

Since each coefficient of the terms with subscripts 1,2, 3,4, 5, and 6 is easily seen to be 
positive for all values of U, , v0 , w 0, h, and R then the sum of these coefficients is equal 
in magnitude to the coefficient of the term with subscript zero and the associated 
matrices are diagonally dominant under all circumstances. 

Diagonal dominance of the matrices associated with the left sides of the equations 
of type (11) is a desirable property from the practical point of view of obtaining 
numerical solutions. It must be noted, however, that Eqs. (11) have been derived by a 
procedure of power series expansion of exponentials in which it is assumed that Rh 
is reasonably small. Thus if Rh is large it may not be assumed that solutions obtained 
using (11) will necessarily be accurate even if they can be obtained more readily 
than by using the standard central-difference equations (8). In this sense Eqs. (11) 
are presented only as a possible formulation having second-order accuracy of a 
somewhat different character to the second-order accuracy of the system (8). The 
question of the accuracy of solutions can only effectively be considered by performing 
solutions for different grid sizes and comparing the results. A discussion of the com- 
puted results from this point of view is given later. 

Equations (8), (lo), and (11) represent three possible formulations of the differential 
equations (3), all of which are accurate to order h2. The boundary conditions (6) must 
now be put in finite-difference form. Derivatives in the boundary conditions on the wall 
of the cube can be approximated by either forward or backward differences which 
have a truncation error of order h2. Thus the boundary conditions (6) can be written 

On x = 0, 

Onx=l, 

oly =o, 

Ony=l, 

On z = 0, 

On z = &, 

to = 0, r], = -(4w, - w,)/2h, [,, = (4~7, - v,)/2h. 

ug = vg = w, = 0; 

50 = 0, 70 = (4w, - w,)/2h, 5, = -(4v, - vJ2h. 

240 = v, = w, = 0; 

E. = (4w, - w,)/2h, 7jo = 0, 50 = -(4uz - uJ2h. (12) 

24, = 1, 210 = w, = 0; 

to = -(4w, - wlo)/2h, rlo = 0, 5, = (4~4 - ul,, - 3)/2h. 

24, = (4u5 - uJ3, vo = (4t.7, - v,3/3, wo = 0; 

to = 0, 70 = 0, 50 = (45, - 5*,)/3. 

I.40 = v, = w, = 0; 

to = (4vt3 - v,,)/2h,-To = -(4u, m- u,,)/2h, to = 0. 
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An alternative form of the finite-difference representation of the boundary conditions 
may be used in which, rather than introducing the velocity components at a distance 
2h from the solid boundaries, the values of the vorticity at a distance h from the solid 
boundary are used. Thus boundary conditions can also be approximated by 

Onx=O, 

Onx=l, 

Ony =0, 

Ony=l, 

On z = 0, 

Onz=+, 

ug = 00 = wg = 0; 
50 = 0, 70 = -2w,/h - 7, , 50 = 2hlh - 51 * 
u. = 210 = w. = 0; 
to = 0, 7. = 2w,/h - 73 , 5, = --2v,/h - 53 . 

240 = 00 = w. = 0; 

4, = 2w,lh - & , 70 = 0, 50 = --2u,lh - 52 . 

240 = 1, ug = wo = 0; 
5, = -2w,/h - &, 7. = 0, 5, = -2(l - u&/h - 5, . 

240 = (4245 - u11)/3, Do = (425 - vJ3, w, = 0; 
lo = 0, 70 = 0, 50 = (455 - 511)/3. 
240 = 00 = w. = 0; 

to = 20,/h - 5, , 70 = -2u,/h - 7e , io = 0. 

(13) 

In the iterative procedure it was sometimes found to be necessary to use a relaxation 
parameter X when calculating the vorticity boundary values. Computations were 
performed using the finite-difference representation of the equations in the forms 
(7) and 09, (7) and (lo), and (7) and (11). Also, computations were performed using 
the boundary conditions expressed in both of the finite-difference forms (12) and (13). 
All calculations were started from the initial assumption that u = u = w = t = t; = 
7 = 0 everywhere except on y = 1, where u = 1. One complete iteration over all the 
internal grid points was performed using Eqs. (7) followed by one complete iteration 
over all the internal grid points using either Eqs. (8) (lo), or (11). New boundary 
conditions were then calculated on all surfaces according to either Eqs. (12) or (13). 
This sequence is defined to be one iteration and was repeated until convergence. The 
criteria used for convergence were that at every internal grid point in the domain 

where E is an assigned tolerance (usually taken to be 10-4) and the superscripts denote 
the number of iterations. In each iteration the order in which the mesh points were 
swept was preserved. 

4. RESULTS 

All the numerical computations were performed on the 1906A computer at Leeds 
University and results were obtained for R = 0, 1, 10, 100, 400 using, various grid 
sizes h = 0.1, 0.05, 0.04. It was found that for Reynolds numbers up to 100 accurate 
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and consistent results could be obtained using either formulations (8), (IO), or (11) 
for the vorticity equations using a mesh size h = 0.05 provided that the boundary 
conditions were discretized in the form of Eqs. (13). Further, no underrelaxation 
was required and although the results could be obtained faster using overrelaxation, 
especially in the parameters a and /I, all the results presented here are for the standard 
Gauss-Seidel procedure. If the boundary conditions are used as discretized in Eqs. (12) 
then a smaller grid size is required in order to obtain accurate results. This is illustrated 
for the case R = 100 in Fig. 3 which gives the u component of velocity on z = 0 at 
y = 0.9 as a function of x using the finite-difference formulation given by Eqs. (11) 
and the boundary condition given by Eqs. (12) and (13) with h = 0.1 and 0.05. Also 
shown are the two-dimensional results obtained by using the method described by 
Burggraf [20], where it is assumed that the box is infinite in the z direction. The results 
are graphically indistinguishable if the finite-difference formulations (8) and (10) are 
used rather than formulation (11). The use of a grid size h = 0.04 gives results which 
are in good agreement with those for h = 0.05 when using the boundary conditions 
in the form (13), but when using the boundary conditions (12) they move more closely 
toward the results obtained using h = 0.05 and Eqs. (13). 

The results presented here are in good agreement with those obtained by Cook [ 151 
who solved the finite-difference equations in the forms (7) and (8) along with the 
boundary conditions given by Eqs. (12). For example, Cook gave a value of 5 = 

FIG. 3. 
x, h = 0.1 

(13). 

0” 0” x x 

The variation The variation of u at R = 100, z = 0, and y = 0.9 as a function of x. o, of u at R = 100, z = 0, and y = 0.9 as a function of x. 0, 
using(13); -. .~ing(13);-----,h=O.lusing(l2);-,Ir=O.O5using(12);---,h= .-. -, h = 0.1 using (12); -, h = 0.05 using (12); - --,h = 

BUrggIIlf; 
0.05 using 
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-6.02 at x = +, y = 1, and z = 0 for the case R = 1 which was confirmed in the 
present calculations, whereas using Eqs. (7) and (11) along with the boundary condi- 
tions given by Eqs. (13) a value 5 = -5.88 was obtained. At the corresponding 
point in the two-dimensional flow considered by Burggraf, Cook obtained a value 
5 = -5.82. The probable reason why the finite-difference formulation of the boundary 
conditions is more accurate in the form (13) rather than (12) is that the use of values 
at grid points which are at a distance 2h from a fixed boundary tend to smooth out 
the solution too much. Thus Eqs. (13) were used for the majority of the numerical 
results and only these results will be presented. 

It is possible to calculate particle tracks for the motion and the results obtained 
are similar to those given by De Vahl Davis and Mallinson [12]. A direct comparison 
of these results is difficult but there is one property of the solutions which can readily 
be compared. De Vahl Davis and Mallinson have used a vector streamfunction 
9 with components (#e, &, , I&) in the three-dimensional problem. The component 
& in the z direction corresponds to the scalar streamfunction which may be employed 
to describe the two-dimensional motion in the xy plane which occurs when the box is 
of infinite length in the z direction. This component may be calculated for the present 
three-dimensional results in the plane z = 0 by suitable integrations over the xy plane 
and its maximum value in this plane compared with the corresponding calculated 
values of De Vahl Davis and Mallinson for both the three-dimensional and two- 
dimensional flows and with the results of Burggraf [20] in the two-dimensional case. 
The comparisons are shown for the case R = 100 in Table I for various grids in the 
xy plane at z = 0 and they clearly show that some experimentation with grid sizes is 
necessary in order to achieve accurate results. The present results were derived using 
Eqs. (11) and boundary conditions (13). 

TABLE I 

Comparison of the Maximum Value of’& in the Plane r = 0 at R = loo” 

Source Grid Maximum 4, 

Ref. [12] (three-dimensional flow) 
Ref. [12] (two-dimensional flow) 
Ref. [20] (two-dimensional flow) 

Present (three-dimensional flow) 

15 x 1.5 0.0867 
15 x 15 0.0985 
10 x 10 0.0784 
20 x 20 0.0955 
30 x 30 0.0999 
40 x 40 0.1015 
50 x 50 0.1022 
10 x 10 0.0769 
20 x 20 0.0945 
25 x 25 0.0956 

@ For two-dimensional flow $# is the two-dimensional streamfunction in the plane of the solution. 
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FIG. 4. The variation of I( at R = 100 and x = 8 as a function of y for various values of z. 0, 
Burggraf; -, z= 0; -----, z = 0.3; ---, 2 = 0.4. 

-0.d 0 

FIG. 5. The variation of u at R = 1 as a function of x for various 
---_- , z = 0.3; ---, z = 0.4. 

values of y and z. -, z = 0; 
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Because the results using the finite-difference formulations (8), (lo), and (11) give 
good agreement up to values of R = 100 when using mesh sizes 0.05 and 0.04, the 
results presented below are for those obtained using Eqs. (11). Also the results for 
h = 0.05 and 0.04 cannot graphically be distinguished. Further, the computational 
times are very comparable, when using the simple Gauss-Seidel procedure, in all 
three formulations of the vorticity equations for Reynolds numbers up to 100. 

Figure 4 shows the variation of u with y at x = $ and z = 0, 0.3, and 0.4 for R = 
100. Also shown is the corresponding two-dimensional solution obtained using the 
method described by Burggraf. The results for R = 0 are very similar and are not 
shown. For both R = 0 and R = 100, the solution for u at z = 0 is very close to the 
Burggraf solution. Figures 5 and 6 show the variation of u as a function of x for 
z = 0, 0.3, and 0.4 and y = 0.95, 0.85, and 0.65. Figures 4-6 show the same kind of 
variation of u for given x and y as z varies. Comparisons can be made of other quanti- 
ties regarding their variations with respect to x, y, and z and similar observations can 
be made. Computations were performed for R > 100 but no results are presented here 
because the grid sizes of h = 0.04 and larger were found not to give accurate results. 

FIG. 6. The variation of u at R = 100 as a function of x tor various values of y and t. -, 
r=o;-----,r=0.3;---,z=0.4. 

There was no difficulty in obtaining the numerical results using the finite-difference 
formulation given by Eqs. (11) without the use of any underrelaxation parameters 
but when using the finite-difference formulation given by Eqs. (8) and (10) an under- 
relaxation procedure had to be adopted in order to obtain convergent solutions. 

Pan and Acrivos [17] considered experimentally the flow in rectangular cavities for 
various aspect ratios. In particular, results were obtained for the cubical cavity 



338 DENNIS, INGHAM, AND COOK 

considered in the present paper. They state that the three-dimensional effects of the 
motion were important in certain regions but not in the central section corresponding 
to the plane z = 0 in the present notation, where to all appearances the flow was 
indeed two dimensional. Pan and Acrivos further state that at this central section 
excellent agreement with the numerical solution given by Burggraf [20] was obtained 
up to R = 400. Since the three-dimensional results at z = 0 obtained up to R = 100 
in the present paper differ by at most 2-3 ‘A from those obtained by solving Burggraf’s 
two-dimensional problem, then they must also be in good agreement with the experi- 
mental results in the plane z = 0. No experimental results were given for any other 
values of z and therefore it is not possible to make further comparisons with the 
results of the experiments. 

5. CONCLUSIONS 

The purpose of this paper has been to present a study of several numerical schemes 
of solving the steady three-dimensional Navier-Stokes equations. The sets of finite- 
difference equations (10) and (11) have not previously been applied to problems in 
three dimensions. It has been found that the set of Eqs. (11) give rise to very stable 
numerical procedures for approximating the equations governing the transport of 
vorticity and that they can be solved quite rapidly by standard iterative procedures. 
In the example considered of flow inside a cubical box, results have been presented 
only for values of the Reynolds numbers up to 100, but the method based on Eq. (11) 
has been found to be stable for considerably higher Reynolds numbers. However, 
the question of the accuracy of the results must also be considered. The results 
presented up to R = 100 have been investigated for accuracy by varying the grid 
size and it was judged that smaller grid sizes would be necessary to give reliable 
results for R > 100 with a consequent increase in computer storage requirements and 
execution time. 

It appears from the present results that the three-dimensional flow in the central 
plane z = 0 of the box is approximated quite well for Reynolds numbers up to 100 
by the two-dimensional flow obtained by assuming the length of the box to be infinite 
in the z direction. The numerical results of Burggraf [20] appear also to be in good 
agreement with the experimental results of Pan and Acrivos [17] on the plane z = 0 
for values of R up to 400. The work of De Vahl Davis and Mallinson [12] suggests 
that the two-dimensional model at R = 100 and 400 overestimates the strength of the 
three-dimensional motion in the plane z = 0. However, the results were based on the 
use of a grid h = 1 /15 and this was not found to be adequate in either the two-dimen- 
sional calculations of Burggraf or those of the present investigation except for small 
values of the Reynolds number. The effect of reducing the grid size at a given Reynolds 
number is to give results in which the strength of the motion is increased. It is a 
conclusion of the present work that further experimentation with variation of grid 
size is necessary in the three-dimensional problem for Reynolds numbers much greater 
than 100. 
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